Plant allocation to defensive compounds: interactions between elevated CO(2) and nitrogen in transgenic cotton plants.
نویسندگان
چکیده
Plant allocation to defensive compounds in response to growth in elevated atmospheric CO(2) in combination with two levels of nitrogen was examined. The aim was to discover if allocation patterns of transgenic plants containing genes for defensive chemicals which had not evolved in the species would respond as predicted by the Carbon Nutrient Balance (CNB) hypothesis. Cotton plants (Gossypium hirsutum L.) were sown inside 12 environmental chambers. Six of them were maintained at an elevated CO(2) level of 900 micromol mol(-1) and the other six at the current level of approximately 370 micromol mol(-1). Half the plants in each chamber were from a transgenic line producing Bacillus thuringiensis (Bt) toxin and the others were from a near isogenic line without the Bt gene. The allocation to total phenolics, condensed tannins, and gossypol and related terpenoid aldehydes was measured. All the treatments were bioassayed against a non-target insect herbivore found on cotton, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Plants had lower N concentrations and higher C:N ratios when grown in elevated CO(2). Carbon defensive compounds increased in elevated CO(2), low N availability or both. The increase in these compounds in elevated CO(2) and low N, adversely affected growth and survival of S. exigua. The production of the nitrogen-based toxin was affected by an interaction between CO(2) and N; elevated CO(2) decreased N allocation to Bt, but the reduction was largely alleviated by the addition of nitrogen. The CNB hypothesis accurately predicted only some of the results, and may require revision. These data indicate that for the future expected elevated CO(2) concentrations, plant allocation to defensive compounds will be affected enough to impact plant-herbivore interactions.
منابع مشابه
Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO(2) and water stress.
Longleaf pine (Pinus palustris Mill.) seedlings were grown in 45-l pots and exposed to ambient or elevated (365 or 730 &mgr;mol CO(2) mol(-1)) CO(2) concentration in open-top chambers for 20 months. Two water-stress treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) were imposed 19 weeks after initiation of the study. At harvest, tissues (needles, stems, taproots, coarse ro...
متن کاملDetermination of genetic uniformity in transgenic cotton plants using DNA markers (RAPD and ISSR) and SDS-PAGE
One concern about using transgenic plants is the genetic variation that occurred from theirs tissue culture and regeneration. Molecular markers are an important element for efficient and effective determination of genetic variation. The present work was carried out to assess the genetic uniformity of transgenic cottons (Bt and chitinase lines), using RAPD, ISSR molecular markers and SDS-PAGE an...
متن کاملEvaluation of Stability of Chitinase Gene in Transgenic Offspring of Cotton (Gossypium hirsutum)
Cotton cultivar Coker has been already transformed with recombinant pBI121-chi via Agrobacterium tumefaciens. The T-DNA region of pBI121-chi carries the chitinase (chi ) gene from bean and is under the control of the CaMV35S promoter. T1 and T2 progenies of transgenic cotton containing the chi gene were used in this study. Polymerase chain reaction (PCR), Southern and Western blotting data con...
متن کاملControls over monoterpene emissions from boreal forest conifers.
We investigated controls over the emission of monoterpenes from two species of boreal forest conifers, black spruce (Picea mariana Miller (B.S.P.)) and jack pine (Pinus banksiana Lamb). Monoterpenes are important in plants as carbon-based defensive compounds and in the atmosphere as photochemically reactive compounds that affect ozone and carbon monoxide concentrations. We examined ecological t...
متن کاملAgrobacterium-mediated Transformation of Cotton (Gossypium hirsutum) Using a Synthetic cry1Ab Gene for Enhanced Resistance Against Heliothis armigera
Cotton (Gossypium hirsutum L.) is an important fiber crop in Iran, cultivated on 150000-200000 ha of land. In Iran the estimated loss due to the insect pest is more than 30%. Traditionally, pests are controlled by 10-12 times spraying per growing season of environmentally harmful chemical insecticides (e.g. endosulfan and/or methosystox). In order to produce transgenic cotton resistance to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 53 367 شماره
صفحات -
تاریخ انتشار 2002